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Abstract—Chameleon is a large-scale, deeply reconfigurable
testbed built to support Computer Science experimentation.
Unlike traditional systems of this kind, Chameleon has been
configured using an adaptation of a mainstream open source
infrastructure cloud system called OpenStack. We show that
operating cloud systems requires both more skill and extra
effort on the part of the operators - in particular where those
systems are expected to evolve quickly - which can make
systems of this kind expensive to run. We discuss three ways in
which those operations costs can be managed: innovative mon-
itoring and automation of systems tasks, building “operator
co-ops”, and collaborating with users.
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I. INTRODUCTION

Computer Science experimental testbeds allow investi-

gators to explore a broad range of different state-of-the-

art hardware options, assess scalability of their systems,

and provide conditions that allow deep reconfigurability

and isolation so that one user does not impact the exper-

iments of another. An experimental testbed is also in a

unique position to support methods facilitating experiment

analysis and improve repeatability and reproducibility of

experiments. Providing these capabilities at least partially

within a commodity framework improves the sustainability

of systems experiments and thus makes them available to a

broader range of experimenters.

Chameleon [1], [2] is a large-scale, deeply reconfigurable

testbed built specifically to support the features described

above. It currently consists of almost 20,000 cores, a total of

5PB of total disk space hosted at the University of Chicago

and TACC, and leverages 100 Gbps connection between the

sites. The hardware includes a large-scale homogenous parti-

tion to support large-scale experiments, as well as a diversity

of configurations and architectures including Infiniband,

GPUs, FPGAs, storage hierarchies with a mix of HDDs,

SDDs, NVRAM, and high memory as well as non-x86

architectures such as ARMs and Atoms. To support systems

experiments, Chameleon provides a configuration system

giving users full control of the software stack including root

privileges, kernel customization, and console access.

Unlike traditional experimental infrastructures such as

Grid’5000 [3], GENI [4], Emulab [5], or CloudLab [6]

which provide experimental capabilities by developing in-

house infrastructures, Chameleon created an approach that

provides similar and partially enhanced capabilities by

building on and extending a mainstream open source

Infrastructure-as-a-Service implementation: OpenStack [7].

Chameleon is built using OpenStack components, such as

Ironic [8] for bare metal provisioning, Neutron [9] for net-

work provisioning and automated layer-2 isolation, Heat [10]

for orchestration, Glance [11] for disk image storage, Gnoc-

chi [12] for long-term time-series metrics storage, and

Swift [13] for object storage. Chameleon is also a core

contributor to the OpenStack Blazar system [14], which is

used to provide advanced reservations of physical hosts,

network segments, and IP addresses [15]. Using OpenStack

as a foundational layer allows us to leverage the effort of

the extensive OpenStack developer community and greatly

increases the pool of potential operators of the testbed as

many have had experience with OpenStack. The benefit of

this approach is akin to using well-supported libraries; we

as operators benefit from patches submitted by authors or

other members of the wider community, and we know that

others are actively testing the same code we are using on a

daily basis to run our infrastructure.

Chameleon has been used to support many projects in

research on operating systems, virtualization, power man-

agement, networking, high-performance computing (HPC),

cloud computing, data science, machine learning, and others.

A sizable proportion of Chameleon users also leverage

the system for education in computer science. To date,

Chameleon has supported 3,000+ users working on 500+

projects.

In this paper, we present the experiences of the Chameleon

operations team, discuss challenges that come up in oper-

ating a testbed of this kind, and compare and contrast the



level of operational challenges with the operations of major

HPC datacenters.

II. CLOUDS VERSUS HPC RESOURCES

A typical HPC resource emphasizes performance and

utilization against flexibility and user control enabled by

virtualization or use of containers. On traditional HPC

resources, users run as non-privileged accounts (e.g., no

sudo access, limited access to various file systems, etc).

On cloud resources, users tend to have root level privileges

on their resources typically provided via virtual machines.

Chameleon takes this a step further by giving users access

to bare metal resources and the ability to make changes to

components such as the BIOS, allowing them to boot from

custom kernel or use the serial console. Further, Chameleon

users can also configure complex networking technologies

including the use of virtual switches [16]. This imposes

obvious challenges for operations from a security as well

as operations standpoint.

Further, goals for resource utilization in a traditional

HPC resource tend to be simplistic: high CPU utilization

is the fundamental objective for HPC. The approach to

resource management thus optimizes provider concerns, i.e.,

resources are scheduled “on availability” [17]; traditional

HPC workloads sit in queues, sometimes for hours, and

run once node resources are available. Cloud and especially

experimental resources on the other hand, often require

support for interactive and co-scheduled resources (e.g.,

combining nodes with networks). This requires satisfying

hard user constraints for resource availability at a given

time [15]. When a resource is available thus becomes an

important requirement and may result in lesser utilization.

Most importantly, HPC and cloud resources differ in com-

plexity and the associated operations cost. Compared with

infrastructure clouds which essentially supply a user with

their own computer for a limited time, the HPC job scheduler

interface is simple and limited. HPC job schedulers do not

manage networks or varying levels of security configurations

for users. Cloud systems are more complex because they

solve a significantly more complex problem. This places

a demand on operations specialists as they require both

broader expertise and potentially more effort to manage.

Bare-metal experimental resource increase this complexity

(and consequent operational demands) even more.

III. OPENSTACK IN CHAMELEON

Chameleon uses OpenStack to provide its experimental

capabilities. While most users are familiar with OpenStack

as infrastructure that deploys virtual machines, the Ironic

component of OpenStack allows it to be used with bare

metal instances. Most components of OpenStack have now

been integrated to work with Ironic - though some important

capabilities (e.g., Ironic’s use for Cinder, the OpenStack

remote block storage component) are still not available. At

the same time, it is clear that the Ironic integration gets pro-

portionally less attention (in terms of performance manage-

ment for example) than more commonly used components

of OpenStack: we have observed performance bottlenecks

for scheduling of an instance on a bare metal machine,

during provisioning of networks on physical switches, during

the PXE-based instance provisioning itself, or even for user

interface response.

The complexity of the system also made upgrades to

OpenStack painful in the past. This has got much better

in recent years with projects like Kolla (packaging systems

in Docker containers) and Kolla-Ansible (deployment-as-

code using Ansible to instantiate OpenStack containers on

physical hosts) [18]. OpenStack also is working to make

rolling upgrades more reliable, so operators do not have to

schedule full downtimes to perform upgrades.

OpenStack’s distributed nature can lead to difficulties

around state synchronization between all of the systems.

This can often arise if network connectivity is interrupted

in the middle of an asynchronous transaction across the

system. These transactions are not true “transactions” (are

not atomic) and cannot be easily rolled back. This is an

unfortunate consequence of the highly distributed nature of

the OpenStack components and plugins.

IV. NETWORKING

Since cloud resources are by nature remote, networking

is an important aspect of cloud computing experimentation.

Most public cloud providers have rolled out advanced net-

working services that are simple to access by any cloud user,

e.g. routing between regions and private networking spaces

within a cloud. However, access to low-level, externally

facing cloud network services such as AWS Direct Con-

nect [19], Azure ExpressRoute [20], and Google Dedicated

Interconnect [21] is difficult, expensive, or even simply

impossible to most researchers without complicated support

by campus IT staff, as well as national and regional network

providers. As a result, most research on these services is

being done by a few select scientists or campus IT staff

themselves. Reducing the hurdles that prevent individual

researchers from accessing these services enables a wide

array cloud experiments, as well as provide expanded train-

ing to the next generation of campus IT staff in the use of

these otherwise inaccessible services. Using networks for

Computer Science experimentation is thus in a class by

itself in terms of the demands it places on operators and

the capabilities it offers to users.

The most significant challenge to increasing access to

direct cloud network connection services is automation of

key provisioning steps that currently require IT staff inter-

vention. Public cloud providers provide a set of connection

points (that we call “stitchports” [22]) in various geographic

locations. Attaching a campus facility to a public cloud

using a direct cloud connection requires a provisioning a



series private network circuits between the campus and

a cloud connection point. Each circuit in the series will

be provisioned by a different regional or national network

transit provider. A typical direct cloud connection between a

public cloud and a campus might make use of a shared cloud

connection point provided by a national transit providers

(e.g., Internet2). This national provider will provision a

circuit between the cloud connection point and the campus’

regional network provider. The regional provider will, in

turn, provision a circuit between the national provider and

the campus. Once in the campus, IT staff can connect the

circuit to the desired local facility. Each of these circuits

and connection points requires intervention by IT staff au-

thorized to provision the appropriate infrastructure. In some

cases (e.g. Internet2 and ESnet) network providers have APIs

that the researcher, or more commonly the campus IT staff,

can use to deploy the required infrastructure on their own.

However, most regional providers and campus infrastructure

have no such API and require manual intervention by trained

IT staff.

Recent additions to Chameleon have enabled users to

design and run experiments using AWS Direct Connect,

Azure ExpressRoute, and/or Google Dedicated Interconnect

without involving institutional IT staff. These experiments

can connect Chameleon resources with the public cloud

direct connections. Users can mimic existing or imagined

campus infrastructure by deploying large scale experiments

using Chameleon hardware and directly connect these “cam-

puses” to public clouds. These connections take advantage

of Chameleon’s direct stitching capabilities and it’s isolated

user controlled OpenFlow networks using Corsa DP2000

series switches.

V. CHAMELEON OPERATIONS

Chameleon users interact with staff via submitting tick-

ets [23]. This mode of interaction was selected over support

via mailing list in anticipation of the scale of the system

as it provides reliable ticket tracking and thereby ensures

that no user problem is left behind. It also greatly facilitates

weekly reviews of tickets which are one of our primary

user feedback mechanisms and motivate the development

of many new features. On the flip side, it prevents uses

from interacting directly which may need us to revisit this

choice. The submitted tickets are processed by University of

Chicago and TACC staff on alternating weeks; Chameleon is

thus operated as a “single instrument” with ticketmaster staff

having sufficient level of privilege on both sites to handle

most problems.

The ticket categories range between routine user profile

management (comprising PI requests, allocation review and

renewals, etc.), user questions (e.g., resulting from imper-

fect understanding of the system), system problems (e.g.,

network, hardware, software, or configuration failures), to

allocation adjustment requests. The latter comprise a variety

of special resource requests (e.g., lease extensions, FPGA

access, or early user access to newly released capabilities)

as well as fair sharing requests, e.g., the assignment of public

IPs which may become unavailable [24] due to users’ failure

to release them.

Overall, we find that a proper functioning of the system is

a collaboration between the operations team and the users:

an independently minded and knowledgeable user commu-

nity, sensitive to the providers concerns can significantly

cut down on operations costs. Specifically, users can help

operators manage the system in two important ways: one of

them is submitting tickets, the other one is not submitting

them. When things don’t work, e.g., an instance does not

deploy properly, or a feature is not sufficiently documented

users often deal with the problem themselves (e.g., by

deploying to another node) without reporting the problem to

the operator. This is not helpful as it may delay maintenance

actions and prevents us from improving documentation.

User tickets are also an invaluable source of feedback on

desired new features, research artifacts such as appliances,

or training vehicles.

On the other hand, much user confusion arises out of un-

derstanding the system imperfectly, using it in ways in which

it was not designed to be used, or ignoring best practices.

In particular, proper management of shared resources, such

as e.g., releasing nodes or public IP addresses or abstaining

from stacking leases, is clearly required to implement fair

sharing on the testbed; failure to do so often results in a

significant support burden on the operators as they arbitrate

the resources between users.

VI. STREAMLINING OPERATIONS

Interaction with users is of course only a small part

of ongoing monitoring on the health of the system. Over

time we have made efforts to drive the cost of operating

Chameleon down as low as possible by combining a strong

“base” of commodity systems with layers of automation

around error detection and resolution.

Automated Issue Detection. Automation helps us detect

issues early at scale to minimize user impact, and also helps

our operators multiply their impact. Every Chameleon site is

provisioned with an internal Prometheus server and a range

of Prometheus metrics exporters [25]. We continuously

monitor machines for high load, disk partitions running

out of space, abnormal levels of network traffic, as well

as various bits of OpenStack state, such as how many

instances are in a failed state, or which system APIs are

no longer responding. We use a central Grafana server [26]

to visualize this monitoring data from each site Chameleon

is deployed at, to allow operators to quickly get an overview

of the testbed as a whole. Alerts are triggered when certain

measured conditions are met; these alerts are broadcasted

to a Slack [27] channel so they are visible immediately

to operators online that day. Besides operational metrics,



we also track and visualize usage patterns on the testbed,

such as the percentage of nodes reserved, and how many

of those reserved nodes are ultimately provisioned by users.

This data can be broken out by project or resource type,

which can be helpful for identifying interesting use-cases or

future capacity planning.

Chameleon also maintains several sets of periodic jobs.

First, we maintain a suite of acceptance tests that test

various “happy paths” through the system, e.g. reserving

a node, provisioning the node with a Chameleon-provided

disk image, assigning a public IP to the node, and ensuring

that external SSH connectivity works and that monitoring

metrics are being automatically pushed from the node once

it is running. Depending on the scope of the test, they may

run hourly, to give quick feedback on a particular system

that may be in an error state, or daily, to act as an overall

“smoke test” in to the health of the system from a typical

user’s point of view.

Automated Repair. We have a separate set of periodic

jobs that have a different purpose: fixing known issues in

an automated fashion. We call these jobs “hammers”. They

solve problems that we see pop up occasionally enough

that the time investment in automation pays off; typically

these are issues where various OpenStack systems have not

converged to a steady state, and a simple adjustment is often

all that is needed. While it is true that such issues should

theoretically not arise, or should be prevented at the source,

our experience has told us that such circumstances end up

being a reality of running a testbed at this scale, and the

simple solution of whacking the system in a few precise

areas does the trick.

Managing Appliances. Finally, we rely on a series of

tools that automate most of our disk image release process.

In particular, we use DiskImage-Builder [28], a tool provided

by OpenStack, to manage our image build; it captures the

disk image build process and manages modifications to it so

that a new image can be automatically generated based on

updates. Thus, as new upstream OS releases are released,

we automatically trigger rebuilds of our disk images bound

to that OS. These images are then released to the testbed as

the latest version of the OS image. We also periodically test

that these images deploy correctly on our various hardware

configurations; for each type of machine, we schedule a

test provision every week, for each disk image Chameleon

provides.

Currently, Chameleon operators still spend more time than

we’d like on diagnosing failures and fixing up the root cause

of failures. Our ongoing focus is on expanding our alerting

infrastructure to capture more types of failures. Additionally,

we will experiment with automated error response: running

an automated set of remedies on the system in an attempt

to solve the problem before an operator has to even look.

It is our goal to ultimately have most seen failure modes

well-documented and alerted on. This makes it easier for

Chameleon to be run by operators less experienced with

the testbed. Ultimately, Chameleon aims to be akin to an

installable and upgradeable package, where operators at

various host institutions can subscribe to changes and apply

patches authored by Chameleon to improve the reliability of

their deployed testbeds.

VII. PACKAGING OPERATIONS

Chameleon’s utility is increased with every deployment:

more sites mean more specialized hardware, more capacity

for experimentation, and more interesting experiments. To

this end, we have worked to package Chameleon (and the

automated operational structure described above) such that

others can deploy it with minimal configuration. Repro-

ducing Chameleon using vanilla OpenStack components is

possible, but challenging. For one, Chameleon maintains

several forks of OpenStack services with minimal patch sets

that are custom-tailored to the needs of a testbed; while

most of them have been contributed it sometimes takes a

long time for a contribution to be accepted. Furthermore,

configuring a functional testbed that supports bare metal

provisioning requires significant understanding of the un-

derlying configuration of all the various OpenStack compo-

nents. The human challenge then becomes: how do we make

Chameleon feasible to install for as large community of

operators without requiring them to absorb what is complex

and specialized knowledge? In order to address it, we have

worked to generalize the internal deployment of Chameleon

such that it can be released and deployed by any user; we

call this CHI-in-a-Box.

We boiled down the interface for CHI-in-a-Box is a set

of configuration files. The site operator must define the

inventory, or which physical machines will host which com-

ponents of Chameleon, a globals YAML [29] configuration

file, which defines important variables such as subnets and

which parts of Chameleon should be enabled, and finally

an encrypted passwords YAML configuration file, which

contains secrets such as MySQL [30] passwords for each

system user. By default, such passwords can be automati-

cally generated using random strings if the operator wishes.

The deployment of CHI-in-a-Box, and indeed with the pri-

mary Chameleon sites, is handled via a commodity tool de-

veloped by the OpenStack community called Kolla-Ansible.

Ansible is used to coordinate the deployment of pre-built

Docker images on the operator’s physical infrastructure.

Rolling upgrades are supported, solving one of the biggest

pain points with maintaining an OpenStack deployment.

CHI-in-a-Box can also automatically install the various

alerting and automated maintenance scripts (“hammers”) to

the operator’s environment to reduce their operational costs.

Chameleon has chosen to “dogfood” CHI-in-a-Box in-

ternally. This means that any bug fixes or features that

Chameleon operators add to the internal deployment of



Chameleon can immediately be leveraged by any other

operators running Chameleon as an associate site.

VIII. CONCLUSIONS

In this paper we have discussed the operational experience

behind Chameleon, a testbed for Computer Science research.

We argue that operating infrastructure clouds is signifi-

cantly more complex than operating traditional HPC systems

because clouds solve a more complex problem and thus typ-

ically place a higher level of experience and skill demands

as well as potentially higher level of time commitment from

the human operators. This high cost is significant because

in practice it limits the usefulness of the system or it

limits the number of users who can use it: in Chameleon

specifically, it means that fewer experiments are available to

fewer investigators.

This human burden can be alleviated by streamlining and

automating operations via various mechanisms we described

above. First, where possible operations can be automated and

streamlined, and (as in the case of networking) tools can be

developed that take the human out of the loop as possible.

In the case of an experimental system that is designed to

evolve in the set of use cases it supports this will by nature

be an ongoing effort; thus the operations of an experimen-

tal system will always contain a development component.

Secondly, packaging of a system, as in the case of CHI-

in-a-box, create the potential of alleviating these costs by

creating a “devops co-op” in practice where operations staff

with high expertise packages operations in such a way that

others with lesser investment of expertise and time can

participate in operations. Finally, the operations of a system

is always a covenant between users and operators; the ways

a user community helps systems operations should not be

underestimated.
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